9™ AIAA/ISSMO Symposium on Multidiscipinary Analysis and Optimization
4-6 September 2002, Atlanta, Georgia

AlAA 2002-5442

MANAGING MDO SOFTWARE DEVELOPMENT PROJECTS

J. C. Townsend” and A. O. Salas'
NASA Langley Research Center, Hampton, VA 23681-2199

Abstract

Over the past decade, the NASA Langley Re-
search Center developed a series of "grand challenge”
applications demonstrating the use of parallel and
distributed computation and multidisciplinary design
optimization. All but the last of these applications were
focused on the high-speed civil transport vehicle; the
final application focused on reusable launch vehicles.
Teams of discipline experts developed these multidisci-
plinary applications by integrating legacy engineering
analysis codes. As teams became larger and the applica-
tion development became more complex with increas-
ing levels of fidelity and numbers of disciplines, the
need for applying software engineering practices be-
came evident. This paper briefly introduces the applica-
tion projects and then describes the approaches taken in
project management and software engineering for each
project; lessons learned are highlighted.

Introduction

Over the past decade, the Computational Aero-
Sciences (CAS) Team at NASA Langley Research
Center (LaRC), under the High Performance Comput-
ing and Communications Program (HPCCP), managed
the development of grand challenge applications dem-
onstrating the use of parallel and distributed computa-
tion and multidisciplinary design optimization (MDO)."
Teams of discipline experts developed these multidisci-
plinary applications by integrating legacy engineering
analysis codes. As the application development became
more complex with increasing levels of fidelity and
numbers of disciplines, the need for applying software
engineering practices became evident.

All of the CAS project applications at LaRC, ex-
cept for the most recent one, focused on the high-speed
civil transport (HSCT) wehicle (Fig. 1). The early
HSCT applications (HSCT2.1 and HSCT3.5) and their
accompanying software infrastructure were referred to

* Member, Multidisciplinary Optimization Branch; Associate
Fellow ATAA
¥ Member, Multidisciplinary Optimization Branch

1

Fig. 1 — Conceptual high-speed civil transport.

as the Framework for Interdisciplinary Design Optimi-
zation (FIDO) project. The last and most complex
HSCT project was referred to as HSCT4.0-CJOpt. The
application was called HSCT4.0, and its significantly
different software infrastructure was called the
CORBA-Java Optimization (CJOpt) framework. The
final CAS grand challenge application project focused
on analyzing reusable launch vehicles (Fig. 2 is an
example); the name of this project was Environment for
Launch Vehicle Integrated Synthesis (ELVIS). The
ELVIS project used a commercial framework to pro-
vide a software infrastructure. In this paper, the term
“framework™ means a hardware and software architec-
ture that enables integration, execution, and communi-
cation among diverse disciplinary processes.

Fig. 2 — Conceptual reusable launch vehicle configuration.

The following sections provide brief introductions
to the three projects mentioned above. The main sec-
tions of the paper describe the approaches to project
management and software engineering for each project
and highlight lessons learned. Because software man-
agement was not introduced until halfway through the
program, no software improvement metrics were col-

American Institute of Aeronautics and Astronautics

Copyright © 2002 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.s. Code.
The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes.
All other rights are reserved by the copyright owner.



lected; therefore, this paper gives only subjective con-
clusions. The Multidisciplinary Optimization Branch at
LaRC was a major contributor to the CAS projects. The
authors are members of that branch, and one or both of
them were on each of the project teams.

FIDO Overview

The HPCCP CAS Team began the FIDO project
in early 1992. The goal was to distribute an MDO
application across a network of heterogeneous compu-
ters including UNIX workstations, parallel computers,
and vector computers. The team members’ emphasis
was on understanding how to build a system to meet
this goal. Conceptual design of an HSCT was chosen as
the application for FIDO because of the general aero-
space interest in HSCT research at that time.

Development of the FIDO system began as a
proof of concept by performing relatively simple analy-
ses on a group of workstations. This first version used
fast, low-fidelity discipline codes (equivalent plate
structural analysis, linearized aerodynamic analysis,
propulsion table lookup, and a simple range equation
for performance fuel weight estimation), a geometry
given by a set of points, a small number of design
variables (on the order of 10), a simple objective func-
tion (minimize gross aircraft weight), and two simple
constraints (specified range and payload).

After the FIDO concept demonstration, initial de-
velopment was mostly devoted to the framework infra-
structure, particularly the communications library.
These developments culminated in 1994 as the
HSCT2.1 application,® which included static aeroelas-
tic analysis using linear analyses. With a working
framework available, development continued with the
addition of nonlinear analyses for aerodynamics
(marching supersonic Euler code) and for structures
(parallelized finite-element analysis). The resulting
HSCT3.5 application was completed in 1996.

HSCT4.0-CJOpt Overview

Changes in CAS Team and MDO Branch objec-
tives in 1997 brought a decreased emphasis on frame-
work development and an increased emphasis on more
realistic models and higher fidelity analysis codes. The
HSCT4.0 application objective was to demonstrate
simultaneous multidisciplinary shape and sizing opti-
mization of a complete aerospace vehicle configuration
by using high-fidelity finite-element structural analysis,
high-fidelity computational fluid dynamics (CFD)
aerodynamic analysis, full mission-cycle performance
evaluation, and an actual proposed HSCT geometry.
The optimization problem definition was to minimize
aircraft gross takeoff weight using 271 design variables
and approximately 32,000 constraints (primarily struc-

2

tural). An important goal of HSCT4.0 was to support
upcoming configuration decisions within the NASA
High Speed Research (HSR) program.

An integration approach that used more standard-
ized technologies than FIDO was desired. Because none
of the commercial frameworks available in 1997 could
handle the size and complexity of HSCT4.0, the CJOpt
framework was developed in-house using industry
standard middleware. Although the emphasis of the
project was on the realism of the application, switching
to new technologies required some focus on framework
issues. The analysis part of the design loop was imple-
mented with CJOpt and was completed in 1999.%3¢
However, before optimization could be implemented,
the project was cancelled in early 2000 because the
HSR program was terminated.

ELVIS Overview

The Environment for Launch Vehicle Integrated
Synthesis (ELVIS) project was initiated in 2000 with
the goal of using high performance computing to im-
plement a system performing conceptual to early pre-
liminary design of a reusable launch vehicle (RLV). An
integrated RLV application was defined with processes
from the Vehicle Analysis and Aerothermodynamics
Branches at LaRC.

The three major elements of the ELVIS system
were an integrated, low-fidelity system analysis (trajec-
tory, weights, aerodynamics, and geometry), an ad-
vanced structural weights analysis (combined finite-
element load-path analysis and theoretical weight
estimation), and an aerothermal database buildup (in-
viscid flow and boundary-layer heating analyses) and
integrated thermal protection system (TPS) sizing
analysis (point-wise thermal analysis coupled with a
multilayer sizing procedure). Minor elements included
an in-orbit radiation analysis and code parallelizations.

The ELVIS project used a commercial integration
framework, so framework development was no longer
an issue. Initial capabilities were demonstrated in all
elements. Cancellation of the HPCCP led to termination
of the ELVIS project in early 2002. Currently, a NASA
technical memorandum is being prepared that will
describe the ELVIS project in detail.

Paper Organization

The remainder of the paper discusses some of the
issues that arose during the FIDO, HSCT4.0-CJOpt,
and ELVIS projects introduced above. The paper is
organized into sections on project management, re-
quirements management, software configuration man-
agement, software design, and testing. Each section
discusses the projects’ experiences in these areas and

American Institute of Aeronautics and Astronautics



highlights issues. The paper ends with concluding
remarks on each project.

Project Management

The goal of software project management is to de-
liver a successtul product while planning, tracking, and
controlling the project’s objectives, resources, and
risks. In this section, the following critical project
management topics will be discussed as experienced in
each of the three CAS Team projects: software life
cycle application, project scope, software teams (roles
and responsibilities), and customer involvement. A
good Software Project Management Plan (SPMP)
should address these topics.

FIDO Project Management

FIDO started with a small project team of civil
servants and contractor employees working closely
together. The contractor employee who first envisioned
the FIDO architecture was the chief designer, and a
civil servant was the project manager. Each team mem-
ber acted as a discipline expert responsible for integrat-
ing one or more of the disciplines represented in the
project. Thus, the roles and responsibilities of the team
members were initially well-defined.

Based on general guidelines from the HPCCP
CAS Team' and a few milestones to be met, the team
adopted a development strategy that began with a
feasibility demonstration and followed with a series of
increasingly complex systems that would ultimately
meet the CAS goals. As the team member with the most
solid computer science background, the chief designer
introduced some software engineering practices to the
team (such as coding standards and software configura-
tion management), along with a standard directory
structure across disciplines, a configuration file ap-
proach, and a standard design for the legacy code
drivers. However, the team members did not follow his
guidance consistently. There was no written SPMP, no
clear choice of software life cycle or phases, nor any
development of software requirements.

After choosing the overall architecture, process to
be modeled, and interfaces, the team proceeded directly
to coding without a detailed design or design reviews.
The project documentation was sketchy at best. Al-
though several attempts were made to obtain customers
who could give direction and focus to the FIDO project,
these efforts were unsuccessful.

HSCT4-CJOpt Project Management

The HSCT4.0-CJOpt team had approximately ten
civil servants from three LaRC branches and four full-
time contractor employees. The civil servants provided

3

the discipline and multidisciplinary expertise under a
technical leader, and the contractor staff supported the
code integration under a contract technical monitor.
Approximately one full-time person supported both
requirements and configuration management; one
person supported testing half time.

In the early stages of the software development,
an initial draft of an SPMP was written, addressing
issues such as project requirements, personnel, man-
agement practices, and software engineering. Although
the software engineering portion was incomplete, the
plan was expected to evolve. The plan identified incre-
mental development as the best candidate life cycle, but
the SPMP was not maintained throughout the project.

Because of its initial link to the HSR program, the
HSCT4.0-CJOpt project had an aggressive software
development schedule. In addition to the integrated
analysis, the requirements included the ability to per-
form various single discipline analyses and optimiza-
tions. To meet the schedule, the project scope was
narrowed and some responsibilities were shifted. The
team decided to have the contractors begin the system
design and implementation while the civil servants
continued to define the multidisciplinary application
requirements. This overlap in life cycle phases is ac-
ceptable in an iterative life cycle. However, coordina-
tion between the civil servants (whose time was
stretched too thinly across multiple projects) and the
contractors (most of whom were supporting the project
exclusively) was not maintained. Consequently, some
requirements and codes were not completely developed
when delivered to the contractors.

Some additional factors made it difficult for the
team to attain project goals. The team transitioned
through three technical leaders with different manage-
ment styles. Also, although a project goal was to sup-
port the HSR program in analyzing HSCT
configurations, close interaction between the CAS and
HSR organizations was not maintained. Thus, the
HSCT4.0-CJOpt project suffered from the lack of
customer focus; team members were left to serve as
their own customer but adequate time to perform this
role was not allocated.

ELVIS Project Management

The ELVIS team had approximately eight civil
servants from four LaRC branches and seven contractor
employees; two members supported requirements and
configuration management full time. Among the les-
sons learned on HSCT4.0 and presented to the ELVIS
team was the recommendation to adopt an evolutionary
software development life cycle. Although the team
agreed with this recommendation, no formal process for
software development was defined. The team defined a

American Institute of Aeronautics and Astronautics



long-term vision and scope for the project and a list of
desirable ELVIS system features. However, it did not
prioritize these features nor use them to develop a clear
set of requirements. The SPMP contained no details of
how the software would be managed.

Three subteams were established to address the
major project elements: LittleMAC to demonstrate
multidisciplinary process integration by using a limited
geometry code and fast, low-fidelity analysis codes;
Advanced Structures to automate and extend a manual
sequence of high-fidelity RLV structural analyses; and
Aerothermal-TPS to automate a manual sequence of
high-fidelity analyses for aerothermal database con-
struction and thermal protection system (TPS) design.
Each subteam acted virtually independently within its
scope; the only interteam coordination was participation
in weekly ELVIS meetings. Although the subteam
products were to be integrated after a year or so to
produce an initial ELVIS system, the ELVIS team
never planned how this integration would take place.

ELVIS had the advantages of a well-defined cus-
tomer for each of the subteams and no external program
demands affecting the project milestones. Both the
Vehicle Analysis Branch and the Aerothermodynamics
Branch desired to have automated integrated procedures
for their conceptual design and analysis work. The
principal advocates for automation became leaders or
active participants in the three teams. This active cus-
tomer participation helped focus the teams on produc-
ing useful systems.

Project Management Summary

Because of the evolving nature of the vision and
requirements for a research project, it is impossible to
completely define detailed software requirements
during its early stages. Thus an evolutionary develop-
ment life cycle approach is particularly suited to re-
search projects because it manages an incremental
series of software builds, each of which begins with a
requirements analysis phase that can utilize the results
of previous builds. Project scope should be set consis-
tent with the available resources (time, money, and
people) and should be revisited whenever resources
change. Also, sufficient resources should be allocated
to software engineering activities.

Team leaders are presented with the challenge of
coordinating team members from organizations with
different cultures and mixes of civil servants and con-
tractors. Other issues include the need for team leader
authority in a matrix organization, for clear assignments
to team members, and for team member time commit-
ment and priority (especially when members are in-
volved in multiple projects). Experience with a number
of projects has shown that having an active customer

4

who is a user of the product being developed focuses
project goals; a development team that is its own cus-
tomer may suffer some loss of focus as a result.

Requirements Management

Requirements management involves determining
the requirements, organizing and documenting the
requirements, and controlling changes to the require-
ments.” It is a critical area of software engineering that
must be addressed for the success of software projects.
Requirements management is a challenge for any pro-
ject and can be even more challenging in a research
environment, where requirements for a typical project
evolve during the lifetime of the project. Issues present,
but not necessarily addressed, during the CAS projects
included determining the scope of the project, determin-
ing different levels of requirements, documenting
known requirements, managing change to the docu-
mented requirements, defining requirement attributes,
and defining traceability links. This section describes
how requirements management was applied in each of
the three CAS projects.

FIDO Requirements Management

For FIDO, the project manager and chief designer
defined the requirements. The team did not emphasize
distinguishing between requirements development,
design, and implementation phases of the project. In the
end, the team produced no requirements document as
such, although the high-level requirements appeared in
process diagrams, advocacy materials (e.g., presenta-
tions to management), and research papers. The demon-
stration problem implemented in FIDO was based on an
application from the earlier Pathfinder project.® The
FIDO application was documented at a high level
showing the sequence of codes and key data generated.

Even though requirements were not clearly distin-
guished from other phases, requirements issues were
brought to the attention of the team at weekly meetings,
discussed, and a team consensus reached. However,
because the only documentation was individual notes
kept by team members, these requirements sometimes
had to be revisited and clarified several times. As the
complexity grew in the series of applications imple-
mented in FIDO, the team began to realize the need to
develop and document the requirements further before
proceeding to implementation.

The FIDO vision evolved as the project pro-
gressed. A significant project goal was to develop a
“plug and play” capability that allowed module ex-
change based on different computer codes for the same
discipline. This goal was found to be much more com-
plex than expected; the differences in the code input
and output files made it very difficult to develop a

American Institute of Aeronautics and Astronautics



common interface. Therefore, this requirement was
never adequately addressed.

HSCT4.0-CJOpt Requirements Management

In the early stages of the project, the team con-
sulted with the LaRC HSR Office and with representa-
tives from major aerospace companies to understand
the minimum requirements for an HSCT analysis and
optimization system that would address their needs. The
majority of the requirements defined by the HSCT4.0
team addressed the integrated multidisciplinary compu-
tational analysis and optimization process. These re-
quirements were captured by defining the wvarious
computational functions in a hierarchical series of
diagrams. The diagrams showed the order and relation-
ships of the computational functions along with the data
required and generated by the system. This material and
supporting text were assembled into a Software Re-
quirements Specification (SRS).¢

At most 20 percent of the process was taken from
a previous project (LCAP®); thus, defining the HSCT4.0
application was a substantial part of the work done in
the project. The SRS evolved over the project lifetime.
Initial draft definitions of the integrated analysis were
developed before coding began. However, some of the
subprocess definitions changed over time. To manage
the requirement changes, several reviews were held;
major releases of the document were placed in configu-
ration management. The low priority placed on docu-
mentation delayed updates to the SRS with changes
identified during the requirements reviews; thus, sev-
eral portions of the system remained undefined for long
periods of time. Because the SRS was the most com-
prehensive description of the HSCT4.0 computational
process, it was published after a thorough review to-
wards the latter stages of the project.

To address traceability, several tables were cre-
ated to trace the HSCT4.0 functional requirements to
the HSCT4.0-CJOpt design elements; the design ele-
ments were traced to configuration items.

ELVIS Requirements Management

The ELVIS team spent considerable time defining
a long-term vision statement for the project, a set of
desirable system features, and a mission analysis, which
included three elements with processes that were for the
most part known. Subsequently, the team broke into
three subteams to automate these processes. Several
Unix scripts, which existed to support low-fidelity
system analysis work at LaRC, were connected for the
ELVIS project and provided the complete LittleMAC
subprocess implementation. The Advanced Structures
subsystem was based on a structural analysis process
that, although previously conducted in various forms

5

manually, had been neither documented nor automated.
Although all of the pieces of the Aerothermal-TPS
process existed prior to ELVIS, they were not tied
together, they had never been executed together as a
complete process, and several codes were targeted for
replacement.

Initially, various approaches were suggested for
documenting requirements; however, the team never
settled on one approach. Instead, each subteam devised
its own method for documenting its computational
processes. Process information was captured in varying
ways, including flowcharts, use cases, spreadsheets, and
meeting minutes. The requirements were provided by
each subteam’s discipline expert and were discussed at
the weekly subteam meetings. Change management
was not an issue for the subteams because the process
requirements were stable and the subteams were small
(4 to 5 members). But, even with stable requirements, it
was noted by the subteams how time-consuming it was
to keep documentation up to date; thus, activities were
documented at varying degrees of detail across the
teams. Although the expected interactions between the
three subsystems were known at a high level, the re-
quirements for interfaces between the subsystems were
never specified. No reviews of the subteam require-
ments were held at the project level.

Requirements Management Summary

Good communication among team members is a
necessity in software projects; requirements manage-
ment involves communicating goals to the team. Com-
munication became especially important in the multi-
disciplinary CAS projects because of the different areas
of expertise across the team members.

Project management support and team resources
are needed to ensure that the project requirements are
clearly documented and are accessible to all team
members. The project’s approach for requirements
management and analysis should be defined as early as
possible so that the requirements can be written consis-
tently. Handling changing requirements should be a
high priority so that all team members are aware of the
changes. In each CAS project, it was important that the
team knew the process that was being developed; the
sequence of computations and data dependencies
needed to be understood.

To minimize the work involved, requirements
management tools should be employed when possible.
Their use would have assisted the CAS projects in
managing changes to the documents and defining
requirements attributes and traceability. However, the
use of new tools requires allocating project resources so
that the tools can be applied in the project and experi-
ence can be gained.

American Institute of Aeronautics and Astronautics



Software Configuration Management

The goal of software configuration management
(SCM) is to increase the reliability and quality of soft-
ware. SCM defines a set of methods and tools for
identifying and controlling software during its devel-
opment and use. The essential elements of an SCM
system are identifying configuration items, establishing
baselines, and controlling changes to the baselines.
Using informal, manual SCM approaches may suffice
for small projects; however, as the size of the team and
the software system increases, version control and
formal processes become necessary. This section de-
scribes how SCM was applied in each of the three CAS
projects.

FIDO SCM

Manual SCM practices were used in the early
stages of the FIDO development. All the files that were
to be configuration managed were placed in a simple
directory structure under one main directory name. The
configuration item list was the list of subdirectories.
One team member acted as configuration manager, who
made baselines by changing the directory permissions
to “read only” and starting the next baseline as a copy
of the baseline with a new name. Each subdirectory was
the responsibility of a single team member, who in-
formed the configuration manager when a code was
ready to become part of a baseline. Although no formal
change procedure was defined, this manual SCM proc-
ess worked reasonably well while the team was small.
However, when the team grew beyond a few members
and the system became more complex, problems arose
in tracking and controlling software changes. Team
members made their own copies of directories and
neglected to follow the established naming conventions.
As a result, confusion eventually arose about which
were the “official” copies of files and directories. These
problems pointed to the need for a more sophisticated
SCM system that allowed the developers to keep track
of multiple versions and multiple system baselines.

One of the SCM problems encountered in FIDO
involved maintaining consistency between the original
legacy code and the corresponding code that became
part of the FIDO system. The development team ne-
glected to baseline the original legacy codes before
changing them to subroutine library form for integra-
tion into FIDO. Consequently, when the owner of the
legacy code produced a new version, it was difficult to
merge the changes into the corresponding FIDO ver-
sion. Eventually, the two code versions became too
different and changes from the code owners were no
longer accepted.

6

HSCT4.0-CJOpt SCM

The HSCT4.0-CJOpt project worked to establish
an SCM system that included both version control and
change management.'® The TRUEchange software tool
marketed by TRUE Software, Inc. (currently owned by
McCabe & Associates) was selected for version con-
trol.* The Metrics Database software developed by
Computer Sciences Corporation was selected for
change management.

The TRUEchange projects and repositories were
defined based on the organization of the HSCT4.0-
CIOpt software; the SCM personnel needed close
interaction with the CJOpt developers to define a re-
pository file structure that efficiently supported both
TRUEchange tool use and system builds. The Metrics
Database software was customized and a detailed SCM
Plan was written. Although the plan called for multiple
reference areas that supported developer, test, and user
system baselines, only one reference area supporting
testing activities was created because of complications
in the system makefiles. The test-system build was
delayed by the priority of other project activities, pri-
marily the preparation of technical papers. The system
build required several months to complete, because
various problems were encountered with the files that
had been loaded.

Once the build was completed, the SCM personnel
decided to begin utilizing the Metrics Database (to gain
experience with it) rather than improving TRUEchange
file layout or reference area issues. The Metrics Data-
base system consisted of web-based software change
request (SCR) forms, software trouble report (STR)
forms, and promotion notification forms (PNF). The
Metrics Database also produced reports that summa-
rized essential information from the SCRs, STRs, and
PNFs collected. These forms were found to be helpful
in controlling changes to existing project baselines.

Because the time required to adequately support
SCM was underestimated and the participation and
support of managers and team members for SCM was
variable, the goal of consistent SCM use throughout the
HSCT4.0 project was not achieved. However, the
project clearly accrued the benefits from using SCM;
baselines were created and controlled using the SCM
tools and processes, which ensured the integrity of the
HSCT4.0 system.

* The use of trademarks and names of manufacturers in this
report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and
Space Administration.

American Institute of Aeronautics and Astronautics



ELVIS SCM

By the time the ELVIS project began, the team
members did not question the need for software con-
figuration management. The ELVIS project chose
Rational Software’s ClearCase and ClearQuest products
for version control and change management software.
An SCM manager was appointed and ClearCase admin-
istrative training was obtained. In addition, several of
the project members received training in the general
usage of ClearCase and ClearQuest. A ClearCase
directory structure was defined for the ELVIS system,
and an SCM Plan was initiated. After the project termi-
nated due to cancellation of HPCCP, a subset of the
ELVIS software and documents was loaded into the
SCM system, anticipating a possible resurrection of
ELVIS.

While the ClearCase SCM tool was being set up,
each ELVIS subteam addressed configuration manage-
ment independently. The Aerothermal-TPS team man-
aged codes using a system supported by the
Aerothermodynamics Branch. The LittleMAC team
began managing files with the manual techniques
described previously. However, due to the number of
LittleMAC versions, this method quickly became
insufficient. The Advanced Structures team did not
address SCM during the ELVIS project time frame.

The modification of original legacy codes was less
of an issue on ELVIS because a commercial framework
was used for integration. However, no plans were made
to bring the analysis source codes into the ELVIS SCM
system, ostensibly because all of them were maintained
under other SCM systems outside of the ELVIS project.
This decision could present a problem if consistency
issues of the nature described in the FIDO section arise
in the future. Also, when codes need to be recompiled,
this approach assumes that the correct code versions
have been recorded and that the codes can be accessed
from the other systems.

SCM Summary

Legacy code configuration management remains
an issue. Often the codes are modified for integration
purposes while the original stand-alone codes continue
to evolve. Merging changes to the original code into the
integrated system can be difficult. Baselining the origi-
nal code in the project’s SCM system can help with this
problem because the version control tools can be used
to merge changes between the different code versions.
Although the tool can perform related functions, good
communication between the developers associated with
a particular code is still required.

Project managers must support the use of configu-
ration management. Successful SCM needs to be done

7

consistently and requires participation from all project
mem